M/s. BHAVANIPURAM LIMESTONE MINE-3

(M/s. Deccan Cement Limited)

Bhavanipuram, Mahankaligudem (V), Palakeedu (M), Suryapet (Dist.) - 508 218.

ENVIRONMENTAL STATEMENT (AUDIT) REPORT FOR THE FINANCIAL YEAR 2024-2025

LAWN ENVIRO PRIVATE LIMITED

(Formerly M/s. Lawn Enviro Associates)

[Environmental Engineers & Consultants in Pollution Control]

Recognised by Central Pollution Control Board, GOI, New Delhi & Laboratory Accredited by NABL

Corporate Office: "LAWN HOUSE", #184-C, Vengalrao Nagar, Hyderabad-500038. (T.S.) INDIA. Phone: 66730925, 66730926, Fax: 040-66730926

Branch Office: D.No.31-58-103, MIG-71, Phase-7, Road No.4/4, Dwarakapuri Colony, Kurmanapallem, Vishakhapatnam-530046.Tel: 9701505182

Email: lawnenviro@yahoo.co.in, info@lawnenviro.in, URL: www.lawnenviro.in

ACKNOWLEDGEMENT

M/s. LAWN ENVIRO PRIVATE LIMITED express sincere debt of gratitude to Bhavanipuram Limestone Mine – 3 of M/s. Deccan Cement Limited (DCL) for the opportunity given by assigning the preparation of Environmental Statement (Audit) Report for the financial year 2024–2025, for their captive limestone mine located near Palakeedu (M), Suryapet (District), Telangana (State). The Environmental statement (Audit) Report is prepared for the financial year 2024–2025. Special mention needs to be made of Executives of Bhavnipuram Limestone Mine–3 for their co-operation and assistance during the preparation of this statement. We also wish to acknowledge our gratitude to all of them who helped during the data collection and report preparation.

CONTENTS

Acknowledgement	2
Contents	3
List of Tables	4
List of Figures	4
Form – V	5
1. INTRODUCTION	11
2. OBJECTIVE OF THE STUDY	11
3. BENEFITS OF ENVIRONMENTAL AUDIT	12
4. LOCATION	14
5. PRODUCTION DETAILS	14
6. MINING PROCESS	14
7. WATER REQUIREMENT	20
8. POLLUTION CONTROL MEASURES IN THE MINE	22
8.1 Pollution Control Measures	22
8.2. Ambient Air Quality	23
8.3 Waste water sources and monitoring	24
8.4 Noise Pollution	25
9. GREENBELT DEVELOPMENT	26
10. EXPENDITURE INCURRED FOR ENVIRONMENT PROTECTION	26
MEASURES IN THE FINANCIAL YEAR 2024-2025	
11. HOUSEKEEPING	26
12. AUDITOR'S COMMENTS	27

APPENDIX

A. National Ambient Air Quality Standards	28
B. Standards for Air quality and effluent for limestone & dolomite mines	30
C. Ambient Air Quality Standards In Respect of Noise	31
D. General Standards for Discharge of Effluents	32
E. Test Characteristics for Drinking Water IS 10500:2012	34
F. Plant Species For Greenbelt Development	36
LIST OF TABLES	
7.1 Water analysis of data	21
8.1 Average values of Ambient Air Quality Data	24
8.2. Average values of Ambient Noise Levels	25
LIST OF FIGURES	
Fig.1 Location Map	15
Fig.2 Process of M/s. Bhavanipuram Limestone Mine-3	18

FORM - V

(See Rule 14)

ENVIRONMENTAL STATEMENT (AUDIT) REPORT

FOR THE FINANCIAL YEAR ENDING 31st MARCH, 2025

PART - A

i) Name and address of the owner/:

(M/s. Deccan Cements Ltd.)

occupier of the industry operation

Bhavanipuram, Ravipahad (V),

or process.

Palakeedu (M), Suryapet (Dist) - 508 218.

M/s BHAVANIPURAM LIMESTONE MINE-3

Telangana State.

ii) Date of the last environmental :

audit report submitted

September, 2024

iii) Production Capacity (Units) : Limestone 4.6 Million TPA,

Top Soil. 0.136 Million TPA

iv) Year of Establishment

: 28-12-2013

PART - B

WATER AND RAW MATERIAL CONSUMPTION

i) Water consumption for limestone mine-3: 250 m³/day

Peak level

Consumption m³/day

1. Dust suppression 170.0 m³/day

2. Greenbelt development – $65.0 \text{ m}^3/\text{day}$

3. Domestic - 15.0 m³/day

Water consumption per unit of product (KL/MT)

During the previous During the current Name of Product financial year financial year

> (2023-2024)(2024-2025)

-N.A--N.A-Limestone

ii) Raw material consumption:

Name of Raw materials	Name of product	Consumption of raw material per MT of output based on MT of Limestone			
		During the previous financial year (2023–2024)	During the current financial year (2024–2025)		
Limestone		17,91,400	13,13,600		

PART - C

POLLUTION DISCHARGED TO ENVIRONMENT

(Parameter's as specified in the consent issued)

Pollutants	Quantity of	Concentrations	Percentage of variation
	Pollutants	Of Pollutants in	from prescribed
	Discharged	Discharges	standards with reasons
	(kg/day)	(mg/L)	
	2024-2025	2024-2025	

a) Wastewater: There is no process wastewater generated.

Air: There is no source of emissions, only dust generation during mining operation is monitored by establishing ambient air quality sampling stations at various places in mine premises and surrounding areas. The generated data is shown in Table 8.1. Analyzed data shows all the values are within the prescribed standards of T.S.P.C.B.

PART - D

HAZARDOUS WASTE

(As specified under Hazardous and other wastes Management and Transboundary Movement Rules, 2016)

	Total Quantity				
Hazardous wastes	Durin finand (2023	g the previous cial year (-2024)			
a) From Process		Nil	Nil		
b) From Pollution control fac	cilities	Nil	Nil		
		PART – E			
		LID WASTES			
		Total quantity M	г per year		
Solids Waste	finaı	ng the previous ncial year (3–2024)	During the current financial year (2024–2025)		
a) From Process		Nil	Nil		
b) From Pollution Control Fa	cility	Nil	Nil		
c) Quantity recycled or re-ut	tilized	Nil	Nil		

PART - F

Please specify the characteristics (in terms of concentration and quantum) of Hazardous as well as solid wastes and indicates disposal practice adopted for both these categories of wastes.

_

PART - G

Impact of the pollution control measures on conservation of natural resources and consequently on the cost of production.

- 1. Air: There is no source of emissions in air pollution.
- 2. Water: consumption of fresh raw water is Nil as Mine pit water which collected during rains and used for Green belt development, dust suppression etc.
- 3. Solid waste: There is no generation of solid waste at Bhavanipuram Limestone Mine 3.
- 4. There is no significant impact on environment, since air or water generates Nil pollutants.

PART - H

Additional investment for environmental protection including abatement of pollution.

The Management of DCL incurred an amount of Rs. 29.64 Lakhs (Rupees Twenty nine lakhs and sixty four thousand only) during the financial year 2024–2025 for various heads like air quality monitoring, greenbelt development, occupational health checkup, social welfare, monitoring of water quality & measurement and solid waste monitoring.

PART - I

Any other particulars in respect of environment protection and abatement of pollution.

Dust generation is a major pollutant in mines which can be controlled by adopting pollution control measures in mining operation and water spraying system. The Management's objective is to achieve the production without affecting the physical, chemical and biological environments of the near by vicinity. Industry has taken lot of efforts to raise the plantation in and around the mine lease area.

1. INTRODUCTION

Bhavanipuram Limestone Mine-3, is producing limestone for the captive consumption of M/s. Deccan Cements Ltd., which is producing cement. Bhavanipuram Limestone Mine-3 is located Near Ravipahad (V), Palakeedu (M), Suryapet (Dist). of T.G. is presently producing 7,700 TPD of Limestone, The production capacity of Bhavanipuram Limestone Mine -3 is 4.60 MTPA,Top Soil. 0.136 Million TPA and got approval for Environmental Clearance from MoEF&CC for 4.60 MTPA vide letter no. J-11015/375/2015-IA.II (M) dated 19.06.2023. DCL has mining lease for limestone with an area extent of 183.11 Ha. The mining area can be approached from Nereducherla from Miryalaguda - Kodad state highway and also from Hyderabad - Guntur state highway i.e. well connected by road network.

2. OBJECTIVE OF THE STUDY

The objective of the present study is to review the performance of pollution control systems installed by the industry so as to identify efficient pollution prevention and control systems, which could be beneficial to both environment and its components. And also Inserted by rule 2 of the Environment (Protection) second Amendment & Rules, 1992 vide G.S.R. 329 (E), dated: 13–3–1992. Every person carrying on an Industry, operation or process requiring consent under Section 25 of The Water (Prevention and Control of Pollution) Act, 1974 (6 of 1974) or under section 21 of The Air (Prevention and Control of Pollution) Act, 1981 (14 of 1981) or both or authorization under the Hazardous Wastes (Management and Handling) Rules, 1989 issued under the Environmental (Protection) Act 1986 (29 of 1986) shall submit an environmental

audit report for the financial year ending 31st March in Form - V to the concerned state pollution control board on or before the 30th day of September every year, this is a virgin mine from this year we are started to submitting the report.

3. BENEFITS OF ENVIRONMENTAL AUDIT

Environmental audit creates awareness in the conservation of natural resources and helps to improve production, safety and health. The benefits of audit are:

- 1. It helps in reduction of raw material consumption by way of waste minimization and adoption of recovery of waste and recycle the same.
- 2. Determines the performance of process systems and helps to improve the systems.
- 3. Efficiency of pollution control systems can be calculated.
- 4. This gives the awareness of environmental organization in the industry.
- 5. Data available will help the management for use in the plant modification and adopting pollution control for different types of technology.
- 6. It helps to identify pollution prone systems and exposure to it by the employees, for taking remedial measures.
- 7. The management will be assisted in complying with local, regional and national laws and regulations by adopting standards.
- 8. It helps to identify hazardous wastes, handling measures taken and exposure to litigation can be reduced.
- 9. To determine the impact on the surrounding environment due to the disposal of its pollutants and identify suitable preventive measures.
- 10. Energy saving systems can be adopted by considering fuel consumption data.

BHAVANIPURAM LIMESTONE MINE-3, has entrusted the task of preparation of Environmental Statement (Audit) for their captive limestone mine to M/s. LAWN ENVIRO PRIVATE LIMITED (LEPL), Hyderabad. An in-depth study was conducted by LEPL, to review the process efficiency, waste water generated and the present treatment systems, emissions generated and air pollution control equipment provided mode of solid waste collection and disposal and the other associated problems leading to the pollution and impact on environment.

4. LOCATION

Bhavanipuram Limestone Mine-3 is located at Ravipahad (V), Palakeedu (M), Suryapet District. Confluence point of Musi and Krishna river is 4.5Km in NE direction, Mahankaligudem (V) is 2.3 Km away in NNE direction and Janpahad (V) is located at 4Km in SW direction. The site is located in the toposheet no.56 P/10 between latitude 16° 42′ 38.7″ & 16° 43′ 26.0″ and longitude 79° 42′ 26.4″ & 79° 43′ 53.9″. Location map is shown in Fig 1.0.

5. PRODUCTION DETAILS:

The total quantity of Limestone taken out from mining lease during the financial year 2024–2025 is 13,43,940 M.T.

6. MINING PROCESS:

Open cast workings

Limestone is being mined, in the Bhavanipuram Limestone mine-3 of the company, by open cast mechanized method of working. The equipment deployment planning for various mining operations has been done keeping in view the following viz., no/very marginal removal of topsoil is required, breaking of limestone by drilling and blasting and loading of limestone and transport to crusher by Shovel-tipper combination.

The mine as on date has spread over an extent of 41.50 Ha out of 183.11 Ha. The mining operations and development is carried out as per the IBM approved plan. The present location has been chosen, to provide for certain amount of flexibility to control the required quality of limestone in the concentrated working to start with.

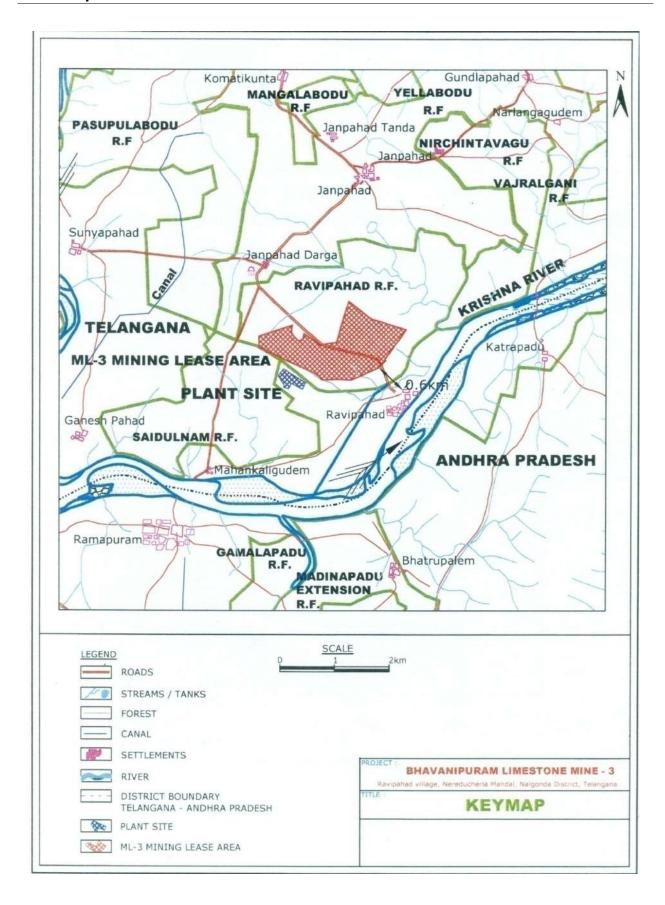


Fig.1. Location map of M/s. Bhavanipuram Limestone Mine-3

Transportation of limestone from the pit mouth to the crusher located in the plant is accomplished through 35-ton capacity dumpers which will be loaded by hydraulic excavator. The lead distance between the existing mine and crusher, one way, is around 1.0 Km (one side). There is an automobile garage to attend to the maintenance and repairs of the heavy earth moving equipment.

There is 1-ton magazine to store explosives located near to the lease area. Burden and spacing shall be kept around 3.0 m to 5.0 m and blastholes will be drilled with a 115-mm diameter wagon drill. Boosters of high explosives in conjunction with ammonium nitrate fuel oil (ANFO) is be used for charging the blastholes. Excel/Nonel non-electric delay initiators (in hole delay iniation system) in each hole shall be used. Hydraulic Rock breaker is using for over size boulders, used for produced during the primary blasting to avoid Noise, Drilling.

List of Mining Machinery

SI. No.	Type of Machinery	Capacity each unit	No. of Units	H.P. of each unit	Electrical/ Non-Elect.	Used in O.C./U. Ground (Specify)
1.	TATA Hitachi Hydraulic ZAXIS-870 5G	4.5 Cum.	01	483	Non-Elect.	Open cast
2.	TATA Hitachi Hydraulic ZAXIS-470 H	3.1 Cum.	01	320	"	,,
3.	TATA Hitachi Hydraulic Excavator Model EX-350	1.5 Cum.	01	230	"	,,
4.	TATA Hitachi Hydraulic Excavator Rock breaker Model: ALICON B 360	30 Tons	01	230	"	,,
5.	BEML Dozer BD65-1	3.6 Cum.	01	165	"	,,
6.	BEML Dumper BH-60M	60 Tones	02	650	"	,,
7.	BEML Dumper BH 35 - 2	35 Tones	05	380	"	,,,
8.	Compactor JCB 116	11.35 ton	01	114	"	"
9.	Atlas Copco Compressor Model : XAS 450-200	450 cfm	02	170	7.7	,,
10.	Shakti 100 (Crawler Drill)	115 ΜΜΦ	01	-	"	,,
11.	Shakti 190 (Crawler Drill)	115 ММФ	01	-	"	,,
12.	Explosive Van TATA 407 Turbo Ex	3310 Kgs.	01	75	"	,,,
13.	Water Tanker TATA LPK 2518 TC	12 KL	01	180	"	,,,
14.	Water Tanker TATA LPK 1615 TC	8 KL	01	180	"	,,,
15.	Mahindra Bolero Camper	1710 kg.	01	46	"	,,
16.	Lighting Tower	5 KVA	01	11	11	,,
17.	Solar Lighting Tower	600w	01	150w	"	,,

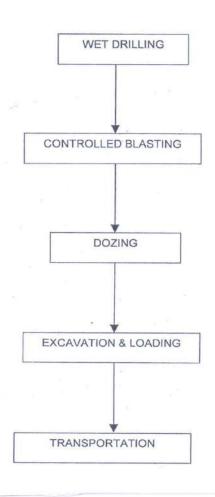


Fig.2 Process of Bhavanipuram Limestone Mine-3

Blasting

Blasting is being carried out by non-electric delay detonators (EXCEL/NONEL), which can keep noise, ground vibrations, fly rock within the safe limits.

Dozing

The blasting area is dozed to make floor even form blasting face to avoid heavy dust generation with Dozer

Loading

The water spraying on the blasted rock is being carried out for dust suppression before they load it in to the tippers. The operators have been provided with nose filters regularly. The operators cabin is of dust proof type.

Transportation

Dust suppression on haul roads is being carried out by water spraying with water tanker and permanent water sprinklers. The operators have been provided safety equipment like safety goggles, respirators and ear muffs for dust free and noise.

7. WATER REQUIREMENT

The average water consumption for mining is 250 m³ /day the details are given below:

Peak Consumption (m³/day)

1. Dust suppression – 170

2. Greenbelt development - 65

3. Domestic – 15

MINE PIT Water from the mines is being used for dust suppression on haulage roads and green belt development. The drinking water is supply from the Krishna River. The analyzed values of water sample is given table 7.1

TABL E - 7.1

DRINKING WATER ANALYSIS DATA

S.No.	Parameter	
1.	PH	7.42 - 7.81
2.	E.C. (micro Siemens/cm)	116.50
3.	Total Dissolved solids	56.00
4.	Total Hardness as CaCO₃	12.57
5.	Alkalinity to Phenolphthalein as CaCO ₃	Nil
6.	Alkalinity to Methylorange as CaCO ₃	32.25
7.	Non-Carbonate Hardness as CaCO ₃	32.25
8.	Calcium as Ca	2.57
9.	Magnesium as Mg	1.14
10.	Sodium as Na	19.25
11.	Potassium as K	0.12
12.	Chloride as Cl	13.43
13.	Sulphate as SO ₄	4.11
14.	Iron as Fe	0.12
15.	Nitrate as NO ₃	1.29
16.	Fluorides as F	0.13
17.	Lead as pb	<0.001
18.	Copper as cu	<0.001

Note: All the values except pH & E.C are expressed in mg/L.

8. POLLUTION CONTROL MEASURES IN THE MINE:

8.1 Pollution control measures

The Industry has given top priority of pollution prevention and control. Adopting various pollution control measures controls the Air pollutants emitted into atmosphere. Stage wise operation as follows:

Blasting:

Blasting is being carried out as per guidelines of DGMS by non-electric delay detonators (EXEL/NONEL) which can keep noise, ground vibrations, fly-rock within the safe limits. Explosives are being stock in a 1.0 ton capacity magazine. Blast vibrations are monitored by Nomis seismograph and kept within limits.

Dozing:

The floor near blasting face is dozed evenly to avoid heavy dust generation with the movement of Dumpers.

Loading:

The water spraying on the blasted rock is being carrying out for dust suppression before they load it into the Dumpers/Tippers. Operators have been provided with nose filters regularly. The operator's cabin is of dust proof type.

Transportation:

Dust suppression on haul roads is being carried out by water spraying with water tanker. The cabins of dump trucks are well-constructed and conditioned to control dust and noise effect on the operator.

8.2 Ambient Air Quality

Ambient air quality monitoring is carried out every month at the following locations in the Core Zone & Buffer Zone to know the status of the ambient air quality

I. CORE ZONE

- 1. ML 3 View Point
- 2. Haul Road
- 3. Factory gate
- 4. Magazine building
- II. BUFFER ZONE
- 1. Mahankaligudem Village
- 2. Ravipahad Village
- 3. Janpahad Darga
- 4. Sunya Pahad Village

Ambient air quality is monitored for 8 hours each sample for PM_{10} , $PM_{2.5}$, SO_2 and NO_x the values are listed out in Table. 8.1. The analyzed values for PM_{10} , $PM_{2.5}$, SO_2 and NO_x are within the limits prescribed by T.G.P.C.B.

Table 8.1

AVERAGE VALUES OF AMBIENT AIR QUALITY DATA

	AVG.					
Location	Flow Rate	PM ₁₀	PM _{2.5}	SO ₂	NOx	CO (ppm)
Core zone						
1. ML-3 View Point	1.10	60.25	21.67	8.08	18.92	<1.0
2. Haul Road	1.10	64.92	25.00	11.33	23.58	<1.0
3. Factory gate	1.10	70.92	30.17	10.50	21.75	<1.0
4. Magazine building	1.09	62.58	23.25	9.25	20.25	<1.0
Buffer zone 2						
1. Mahankaligudem Village	1.08	56.42	19.75	7.50	17.25	<1.0
2. Ravipahad Village	1.10	55.50	20.00	8.00	19.17	<1.0
3. Janpahad Darga	1.07	65.00	25.50	11.67	23.50	<1.0
4. Sunya Pahad Village	1.09	57.50	20.58	7.58	18.25	<1.0

Note: All the values are expressed as $(\mu g/m^3)$

8.3 Wastewater Sources and Monitoring

Wastewater from toilets is sent to septic tank followed by soak pit.

8.4 Noise Pollution

Noise pollution levels kept within the permissible limits.

Crushing

Crushing process is being carried out in confined area, which is fully closed. Two nos. of efficient dust collectors are installed at the crushers for controlling the dust generation. The noise level depends on the material hardness, which is fed to the crusher.

Noise Levels are measured at various places in the mines by using a sound level meter the results are given in the table 8.2

Table 8.2

Average values of Ambient Noise Levels

C N -	Lagation	Noise Levels Leq dB(A)		
S.No.	Location	Day Time	Night Time	
1	SHOVEL WORKING	77.50		
2	DRILLING AREA WORKING	81.75		
3	INSIDE TIPPER CABIN	75.75		
4	CRUSHER HOPPER	80.25		
5	HAULAGE ROAD	73.50		

9. GREENBELT DEVELOPMENT

Greenery/plantation recharges oxygen into environment. Greenbelt development may have the following benefits.

- a. Mitigation of fugitive emissions including odour
- b. Noise pollution control
- c. Improving the local eco-system
- d. Arresting the soil erosion
- e. Improving the landscape of the area

f. Aesthetics

During this financial year (i.e. 2024–2025) 1,814 saplings were planted in mining lease.

10. EXPENDITURE INCURRED FOR ENVIRONMENT PROTECTION MEASURES IN THE FINANCIAL YEAR 2024–2025:

Total expenditure incurred for various pollution control measures, Occupation health services, solid waste management, monitoring, greenbelt development and social and welfare activities by the Management of DCL is Rs. 29.64 Lakhs (Rupees Twenty nine lakhs and sixty four thousand only) during the financial year 2024–2025.

11. HOUSE KEEPING

To avoid unnecessary loss of product in the form of dust emission and polluting surrounding environment. Water spraying is done in mining area including haul road to control fugitive emissions. Mine premises is to be clean and green to have good house keeping. M/s. BHAVANIPURAM LIMESTONE MINE-3 is keeping their mine and premises clean and green. House keeping has been found to be well.

12. AUDITOR'S COMMENTS

1. The fugitive emissions in mine area are within the prescribed limits of T.G.P.C.B.

2. The audit activities have enabled the mine authorities to control fugitive emissions and water consumption efficiently.

4. During the financial year 2024-2025, Rs. 29.64 Lakhs (Rupees Twenty nine lakhs and sixty four thousand only) were spent on environmental protection and social welfare activities by the management of DCL.

Auditors Signature

PPENDIX-A

MINISTRY OF ENVIRONMENT AND FORESTS NOTIFICATION

New Delhi, the 16th November, 2009. **NATIONAL AMBIENT AIR QUALITY STANDARDS**

G.S.R. 826 (E) In exercise of the powers conferred by section 6 and section 25 of the Environment (Protection) Act, 1986, (29 of 1986), the Central Government hereby makes the following rules further to amend the Environment (Protection) Rules, 1986, namely:-

- 1. (1) These rules may be called the Environment (Protection) seventh Amendment Rules, 2009.
 - (2) They shall come into force on the date of their publication in the Official Gazette.
- 2. In the Environment (Protection) Rules, 1986, (hereinafter referred to as the said rules), In rule 3, in sub-rule (3B), for the words, brackets, figures and letters, "In columns (3) to (5) of Schedule VII" the words, brackets figures and letters "in columns (4) and (5) of Schedule VII" shall be substituted.
- 2. For Schedule VII to the said rules and entries relating thereto, the following Schedule and entries
- 3. shall be substituted, namely:--

S.	Pollutant	Time	Concentration in Ambient Air			
No		weighted average	Industrial , Residential, Rural and Other area	Ecologically Sensitive Area (notified by Central Government)	Methods of Measurement	
1.	Sulphur dioxide (SO ₂), μg/m ³	Annual Average*	50 μg/m ³	20 μg/m ³	Improved West and Gaeke Method Ultravoilet Fluorescence	
		24 hours**	80 µg/m ³	80 μg/m ³		
2.	Nitrogen Dixodie (NO ₂) μg/m ³	Annual Average*	40 μg/m³	30 μg/m ³	Modified Jacob & Hochheiser (Na-Arsenite) Method Chemiluminescence	
		24 hours**	80 μg/m ³	80 μg/m ³		
3.	Particulate Matter (Size less than 10 µm) or PM ₁₀	Annual Average*	60 μg/m ³	60 μg/m ³	1.Gravemetric 2. TOEM	
	µg/m ³	24 hours**	100 μg/m ³	100 μg/m ³	3. Beta attenuation	
4	Particulate Matter (size less than 2.5 µm) or PM _{2.5}	Annual Average*	40 μg/m ³	40 μg/m³	Gravemetric TOEM	
	µg/m³	24 hours**	60 μg/m ³	60 µg/m ³	3. Beta attenuation	
5.	Ozone (O ₃) µg/m ³	8 hours	100 μg/m ³	100 μg/m ³	UV photometric Chemilminescence	
		1 hour	180 μg/m ³	180 μg/m ³	3. Chemical Method	
6.	Lead (Pb) μg/m³	Annual Average*	0.50 μg/m ³	0.50 μg/m³	AAS/ICP Method after sampling on EPM 2000 or equivalent filter paper ED-XRF using Teflon filter	
		24 hours**	1.0 μg/m ³	1.0 μg/m ³		

:2:

7.	Carbon Monoxide (CO) mg/m ³	8 hours** 1 hour	02 mg/m ³	02 mg/m ³	Non dispersive infra Red (NDIR) spectroscopy
8.	Ammonia (NH ₃) µg/m ³	Annual Average*	100 μg/m ³	100 μg/m ³	Chemiluminescence Indophenol blue method
		24 hours**	400 μg/m ³	400 μg/m ³	
9.	Benzene (C ₆ H ₆ µg/m ³)	Annual Average	05 μg/m³)	05 μg/m³)	Gas chromatography based continuous analyzer Adorption and Desorption followed by GC analysis
10.	Benzo (a) Pyrene (BaP) particulate phase only, ng/m ³	Annual Average	01 ng/m ³	01 ng/m ³	Solvent extraction followed by HPLC/GC analysis
11.	Arsenic(As) ng/m ³	Annual Average	06 ng/m ³	06 ng/m ³	AAS/ICP method after sampling on EPM 2000 or equivalent filter paper
12.	Nickel (Ni), ng/m ³	Annual Average	20 ng/m ³	20 ng/m ³	AAS/ICP method after sampling on EPM 2000 or equivalent filter paper

 Annual Arithmetic mean of minimum 104 measurements in a year at particular site taken twice a week 24 hourly at uniform intervals.

Note: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits Specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

^{** 24} hourly / 8 hourly or 01 hourly monitored values, as applicable, shall be complied with the 98% of the time in a year. 2 % of the time, they may exceed the limits but not on two consecutive days of monitoring.

APPENDIX-B

AIR QUALITY STANDARDS FOR LIME STONE AND DOLOMITE MINES

(Air Quality Standards as per Indian Bureau of Mines, Department of Mines, Ministry of Coal & Mines, Govt. of India)

S.No.	Parameters/Pollutants	Time weighted average (TWA)	Concentration at work zone monitoring station
1	Suspended Particulate Matter (SPM)	8 hours	700 μg/cu m
2	Resperable Particulate Matter (RPM) size less than 10 microns)	8 hours	350 μg/cu m
3	Sulphur Dioxide (SO ₂)	8 hours	5 mg/cu m
4	Oxides of Nitrogen (NO ₂)	8 hours	6 mg/cu m
5	Carbon Monoxide	8 hours	40 mg/cu m

Note: The distance of monitoring stations from the dust generating source should not exceed 300 m and it should be located in the down wind direction, considering the prominent wind direction.

MINE EFFLUENT STANDARDS FOR LIME STONE AND DOLOMITE MINES

(Mine effluent standards as per Indian Bureau of Mines, Department of Mines, Ministry of Coal & Mines, Govt. of India)

S.No.	Parameters/Pollutants	Concentration not to be exceeded in mg/L except pH
1	pH	5.5 – 9.0
2	Total Suspended Solids (TSS)	100.0
3	Oil & Grease	10.0
4	Iron	3.0
5	Fluoride	1.5

Note: The monitoring stations should be at the place as far as possible close to the source of generation or the discharge from effluent treatment plant, as applicable.

APPENDIX-C AMBIENT AIR QUALITY STANDARDS IN RESPECT OF NOISE

G.S.R. 158 (E) dt. 09-3-2009

The Environment (Protection) Rules, 1986 (See rule 3)

Area Code	Category of Area	Limits in dB(A)	
		Day Time	Night Time
Α	Industrial Area	75	70
В	Commercial Area	65	55
С	Residential Area	55	40
D	Silence Zone	50	40

- Note: 1. Day time is reckoned in between 6 am and 10 pm.
 - 2. Night time is reckoned in between 10 pm and 6 am.
 - 3. Silence Zone is defined as areas upto 100 m around such premises as hospitals, educational institutions and courts. The silence zones are to be declared by the competent authority. Use of vehicular horns, loud speakers and bursting of crackers shall be banned in these zones.
 - 4. Mixed categories of areas should be declared as one of the four above mentioned categories by the competent authority and the corresponding standards shall apply.

APPENDIX-D

GENERAL STANDARDS FOR DISCHARGE OF EFFLUENTS [Schedule II inserted vide G.S.R. 919 (E) dt. 12-9-1988 Published in the Gazette No. 488 dt. 12-9-1988] The Environment (Protection) Rules, 1986 (See rule 3)

SI.	The Environment (Protection) Rules, 1986 (See rule 3) SI. Parameter Standards				
No.		Inland Surface Water	Public Sewers	Onland for Irrigation	Marine Coastal areas
1	2	3			
4	Calaum and Odaum	a.	b.	C. Nata	d.
1	Colour and Odour	See Note 1		See Note 1	See Note 1
2	Suspended Solids, mg/L, max	100	600	200	 a. For process waste water 100 b. For cooling water effluent-10% above total suspended matter of influent cooling water
3	Particle size	Shall pass 850 micron IS sieve			a. Floatable solids max- 3 mmb. Settleable solids max-850 μ
4	Dissolved Solids (inorganic), mg/L, max	2100	2100	2100	
5	p ^H value	5.5 – 9.0	5.5 – 9.0	5.5 – 9.0	5.5 – 9.0
6	Temperature ^o C, max	Shall not exceed 40 in any section of the stream within 15 m downstream from the effluent outlet	45 at the point of discharg e		45 at the point of discharge
7	Oil & Grease, mg/L, max	10	20	10	20
8	Total Residual Chlorine, mg/L, max	1.0			1.0
9	Ammonical Nitrogen (as N), mg/L, max	50	50		50
10	Total Kjeldahl Nitrogen (as N), mg/L, max	100			100
11	Free Ammonia (as NH ₃) mg/L, max	5.0			5.0
12	Biochemical Oxygen Demand (5 day at 20 °C), mg/L, max	30	350	100	100
13	Chemical Oxygen Demand, mg/L, max	250			250
14	Arsenic (as As), mg/L, max	0.2	0.2	0.2	0.2
15	Mercury (as Hg), mg/L, max	0.01	0.01		0.01
16	Lead (as Pb), mg/L, max	0.1	1.0		1.0
17	Cadmium (as Cd), mg/L, max	2.0	1.0		2.0

SI.	Parameter	Standards				
No.		Inland Surface Water	Public Sewers	Onland for Irrigation	Marine Coastal areas	
1	2			3		
		a.	b.	C.	d.	
18	Hexavalent Chromium (as Cr ⁺⁶), mg/L, max	0.1	2.0		1.0	
19	Total Chromium (as Cr), mg/L, max	2.0	2.0		2.0	
20	Copper (as Cu), mg/L, max	3.0	3.0		3.0	
21	Zinc (as Zn), mg/L, max	5.0	15.0		15.0	
22	Selenium (as Se), mg/L, max	0.05	0.05		0.05	
23	Nickel (as Ni), mg/L, max	3.0	3.0		5.0	
24	Boron (as B), mg/L, max	2.0	2.0	2.0		
25	Percentage Sodium, max		60.0	60.0		
26	Residual Sodium Carbonate, mg/L, max			5.0		
27	Cyanide (as CN), mg/L, max	0.2	2.0	0.2	0.2	
28	Chloride (as CI), mg/L, max	1000	1000	600		
29	Fluorides (as F), mg/L, max	2.0	15.0		15.0	
30	Dissolved Phosphate (as P), mg/L, max	5.0				
31	Sulphate (as SO ₄), mg/L, max	1000	1000	1000		
32	Sulphide (as S), mg/L, max	2.0			5.0	
33	Pesticides	Absent	Absent	Absent	Absent	
34	Phenolic Compounds (as C ₆ H ₅ OH), mg/L, max	1.0	5.0		5.0	
35	Radio Active Materials:	10 ⁻⁷	10 ⁻⁷	10 ⁻⁸	10 ⁻⁷	
	a. Alfa Emitters μc/mL, maxb. Beta Emitters μc/mL, max	10 ⁻⁶	10 ⁻⁶	10 ⁻⁷	10 ⁻⁶	

Note: 1. All efforts should be made to remove colour and unpleasant odour as far as practicable.

- 2. The standards mentioned in this notification shall apply to all the effluents discharged, such as industrial mining and mineral processing activities, municipal sewage, etc.
- 3. Omitted by Rule 2 of the Environment (Protection) Fourth Amendment Rules, 1992 vide Notification G.S.R. 797 (E) dated 01-10-1992, Gazette No. 396 dated 01-10-1992.

APPENDIX-E TEST CHARACTERISTICS FOR DRINKING WATER (IS:10500-2012)

SI. No.	Substance of Characteristic	Require-ment (Acceptable Limit)	Permissible Limit in the Absence of Alternative Source	Methods of Test (Ref. To IS)	Remarks
1	2	3	4	5	6
i.	Colour, Hazen units, max	5	15	3025 (Part 4)	Extended to 15 only if toxic substances are not suspected, in absence of alternative sources.
ii.	Odour	Agreeable	Agreeable	3025 (Part 5)	a. Test cold and when heatedb. Test at several dilutions
iii.	Taste	Agreeable	Agreeable	3025 (Part 7 & 8)	Test to be conducted only after safety has been established
iv.	Turbidity, NTU, max	1	5	3025 (Part 10)	
V.	p ^H value	6.5 – 8.5	No relaxation	3025 (Part 11)	
vi.	Total Hardness (as CaCO ₃) mg/L, max	200	600	3025 (Part 21)	
vii.	Iron (as Fe), mg/L, max	0.3	No relaxation	3025 (Part 53)	Total concentration of manganese (as Mn) and iron (as Fe) shall not exceed 0.3 mg/l
viii.	Chlorides (as Cl), mg/L, max	250	1000	3025 (Part 32)	
ix.	Residual, free Chlorine, mg/L, min	0.2	1	3025 (Part 26)	To be applicable only when water is chlorinated. Tested at consumer end. When protection against viral infection is requierd, it should be min. 0.5 mg/L
X.	Dissolved Solids, mg/L, max	500	2000	3025 (Part 16)	
xi.	Calcium (as Ca), mg/L, max	75	200	3025 (Part 40)	
xii.	Copper (as Cu), mg/L, max	0.05	1.5	3025: 1964 (Part 42)	
xiii.	Manganese (as Mn), mg/L, max	0.1	0.3	3025:(Part 59)	Total concentration of manganese (as Mn) and iron (as Fe) shall not exceed 0.3 mg/l
xiv.	Sulphate (as SO ₄), mg/L, max	200	400	3025 (Part 24)	May be extended to 400 provided that magnesium does not exceed 30
XV.	Nitrate (as NO ₃), mg/L, max	45	No relaxation	3025 (Part 34)	
xvi.	Fluoride (as F), mg/L, max	1.0	1.5	3025: (Part 60)	

:2:

SI. No.	Substance of Characteristic	Require- ment (Acceptabl e Limit)	Permissible Limit in the Absence of Alternative Source	Methods of Test (Ref. to IS)	Remarks
1	2	3	4	5	9
xvii	Phenolic compounds (as C ₆ H ₅ OH), mg/L, max	0.001	0.002	3025: (Part 43)	
xviii.	Mercury (as Hg), mg/L, max	0.001	No relaxation	IS 3025 (Part 48)/ Mercury Analyser	
xix.	Cadmium (as Cd), mg/L, max	0.003	No relaxation	IS 3025 (Part 41)	
XX.	Selenium (as Se), mg/L, max	0.01	No relaxation	IS 3025 (Part 56) or IS 15303*	
xxi.	Arsenic (as As), mg/L, max	0.01	0.05	3025 (Part 37): 1988	
xxii.	Cyanide (as CN), mg/L, max	0.05	No relaxation	3025 (Part 27)	
xxiii.	Lead (as Pb), mg/L, max	0.01	No relaxation	IS 3025 Part 47	
xxiv.	Zinc (as Zn), mg/L, max	5	15	39 of 3025: 1964 (Part 49)	
XXV.	Anionic detergents (as MBAS), mg/L, max	0.2	1.0	Annex K of IS 13428	
xxvi.	Chromium (as Cr ⁺⁶), mg/L, max	0.05	No relaxation	IS 3025 (Part 52)	
xxvii	Polynuclear aromatic hydrocarbons (as PAH), g/L, max	0.0001	No relaxation	APHA 6440	
xxviii	Mineral Oil, mg/L, max	0.05	No relaxation	Clause 6 of IS 3025 (Partc39) infrared Partition Method	
xxix	Pesticides, mg/L, max	Absent	0.001		
xxx	Radioactive materials: a. Alpha emitters, Bq/L, max b. Beta	0.1	No relaxation	Part – 2	
	emitters, pci/L, max	1.0	No relaxation	Part - 1	
xxxi	Alkalinity, mg/L, max	200	600	13 of 3025: 1964 (Part - 23)	
xxxii	Aluminum (as Al), mg/L, max	0.03	0.2	31 of 3025: 1964(Part - 55)	
xxxiii	Boron, mg/L, max	0.5	1.0	29 of 3025: 1964 (Part - 57)	

Note: Atomic Absorption Spectrophotometer method, may be used.

APPENDIX-F PLANT SPECIES FOR GREEN BELT DEVELOPMENT

SI. N	o. BOTANICAL NAME	COMMON NAME	SIZE AND TYPE SUITABLE SIZE
1.	Acia auriculaeformis (Mimosaceae)	H: Vilaiti	M: Semi evergreen fragrant white flowers. Suitable in green belts on road sides.
2.	Adina cordifolia (Rubiaceae)	T: Pasupukadamba H: Haldu	L: Deciduous a light demander, suitable on open areas & near flares.
3.	Aequle marmelos (Rutaceae)	T: Bilavamu H: Bael	M: Deciduous, good for green belts for green belts near temples.
4.	Anogeissus latifolia (Combretaceae)	T: Chirimanu H: Dhaura	M: Deciduous, good for green belts near temples
5.	Artabotrys hexapetius (Annonaceae)	T: Monaranjani H: Hara Champa	S: Evergreen shrub with fragrant flowers good for gardens & inside boundary wall and long canals
6.	Averrhoa carambola (averrhoaceae, Oxalidaceae)	T: Kamaarakkarmel H: Kamrak	S: Semi evergreen good in narrow belts (green belts <50m width) along channels
7.	Azadirachta indica (Meliaceae)	T: Vepachettu H: Nim	L: Evergreen, suitable in green belts and out side office & hospital buildings
8	Bauhinia Variegata (Caesalphiniaceae)	T: Devakanchanamu H: Rachanaram	M: Deciduous, good in green belts, garden and as a second row avenue tree.
9.	Borassus flabellifer (Arecacese; Palmae)	T: Taadi H: Tad	L: A tall deciduous, palm, can be used as wind break when of different age.
10.	Bosellia serrata (Burseraceae)	T: Phirangi saambraani H: Kunder	M: Deciduous suitable on green shallow soils.
11.	Burera serrata (Bureraceae)	T: Chitreka	M: Deciduous suitable on shallow soils as a green belt or avenue tree.
12.	Butea monosperma (Fabaceae)	T: Mlduga H: Palas	M: Deciduous for green belt and as a second row avenue tree.
13.	Caesalpinia pulcherrima (Leguminosae)	T: Pamiditangedu H: Gulutora	M: A large shrub suitable for gardens outside office and along channels
14	Callistemon lanceolatus (Myrtaceae)	T: Bottle Brush	M: Deciduous for some time, ornamental plant in garden
15.	Careva arobora (Lecythidaceae)	T: Araya H: Kumbi	L: Deciduous, good in green belts.
16.	Carrisa carandas (Apocynaceae)	T: Vaka H: Karaunda	S: semi evergreen, large bushy shrub, good as a hedge to protect against noise.
17.	Caryota urenus (Palmae)	T: Jilugujattu H: Mari	M: A lofty palm, good as a wind break.
18.	Cassia fistula (Leguminosaae)	T: Rela H: Amaltas	M: Deciduous good ornamental tree in green belt.
19	C. Siamea	T: Sima Tangedu	L: Evergreen good as avenue tree
20.	Casuarina equisetifolia	T: Sarugudu H: Jungli s aru	M: Evergreen, suitable for covering low-lying areas and in green belt.
21.	Cadrela toons	T: Nandichettu H: Mahanim	L: Deciduous, good in open spaces, in green belts and along ponds.
22.	Cestrum diurnum	H: Din-ka-maja	S: A shrub with white fragrant flowers, suitable (solanaceae) around boilers and waste disposal sites.
			(Contd)

PLANT SPECIES FOR GREEN BELT DEVELOPMENT

Sl.No.	BOTANICAL NAME	COMMON NAME	SIZE AND TYPE SUITABLE SIZE
23.	Cleistanthus collinus (Euphorbiaceae)	T: Kadishe H: Garari	S: Deciduous tree suitable in green belts.
24.	Cocus nucifera (palmae)	T: Kobbarichettu H: Nariyal	L: A tall stately palm suitable on sea shore river banks and hill slopes.
25.	Clestanthus collimus (Leguminosae)	T: Errasissu H: Shisham	M: Deciduous, suitable on areas around flare sites and in green belts.
26.	Delomix reqia (Leguminosae)	T: Shimasankesual H: Gulmohar	M: Deciduous ornamental, suitable on road sides.
27.	Dillenia inidica	T: Peddakalinga H: Chalta	L: Evergreen, white fragrant flowers, goon in green belts and around waste disposal sites.
28.	D. pentagyna	T: Chinnakalinga H: Aggai	L: Deciduous, good in green belts and onsite around flare.
29.	Emblica officianallis (Euphorbiaceae)	T: Amalakamu H: Amla	M: Deciduous, good as isolated trees in garden
30.	Erythrina suberosa (Leguminosae)	T: Barijama H: Dauldhak	M: Deciduous, good in green belts
31.	E. variegata	T: Badisa H: Dadap	M: Deciduous, good in gardens outside office buildings.
32.	Ficus bengalensis (Moraceae)	T: Marri H:Bargad	L: Deciduous, widely spread avenue tree (15 m apart)
33.	F. religiosa	T: Bodhi H:Pipal	L: Deciduous, widely spaced avenue tree also a single tree in isolated sites.
34.	Emelina arborea (Verbenaceae)	T: Gumartek H: Sewan	M: Deciduous, good in green belts around flare sites.
35.	Grewia tiloifolia (Tiliaceae)	T: Charachi H: Dhamim	M: Deciduous, good in green belts for use as timber
36.	Hamelen patens		S: Evergreen shrub with dense atractive foliage of greenish bronze leaves; good in gardens.
37.	Hardwicka binata (Leguminosae)	T: Yepi H: Anjan	M: Deciduous, good for green belts on shallow soils.
38.	Hibiscus mutabilis (Malvaceae)	H: Sthal Kamal	S: Large bushy shrub, semi evergreen good in green belts & in gardens, along channels.
39.	H.Rosa sinensis	T: Java Pusphamu	S: Evergreen woodly showy shrub good for gardens.
40.	Lxora arborea	T: Korivipala H: Navari	S: Much branched evergreen, good in green belts and in gardens.
41.	Lxora coccinea	T: Mankana H: Rangan	S: Much branched evergreen, good in garden and in green belts.
42.	Jasminum sambur (Oleaceae)	T: Boddumalle H: Moghra	s: Much branched evergreen, good in garden and in green belts.
43.	Kydia calycina (Malvaceae)	T: Potri H: Pula	S: Deciduous, good along canals and in green belts.
44.	Lagersteoemia speciosa (Lythaceae)	T: Varagogu H: Jarul	M: Deciduous, good along road sides and in garden
	•		(Contd)

PLANT SPECIES FOR GREEN BELT DEVELOPMENT

SI.No.	BOTANICAL NAME	COMMON NAME	SIZE AND TYPE SUITABLE SIZE
45.	Lannea coramandelica (Anacardiaceae)	T: Appriyada H: Jhingan	L: Deciduous, good on well drained green belts and around flares.
46.	Lawsonia alba (Lythraceae)	T: Goranti H: Mehndi	S: Glabrous much branched shrub, good along canal sides.
1 7.	Locbnera rosea (Apocyenaceae)	T: Bilaganuueru H: Sadabahar	S: An erect perennial herb; good in garden and along small channels.
18.	Madhuca indica (Sapotaceae)	T: lppa H: Mahua	M: Deciduous, good in green belts
9.	Mallotus philippensis (Euphorbiaceae)	T: Kunkuma H: Sidur	S: small evergreen good along channels
50.	Melia azedarach (Meliaceae)	T: Turaka Vepa H: Bakain	M: Deciduous good along small roads, and canals.
1.	Millingtonia hortensis (Bignoniaceae)	T: Kavuki H: Akas Nim	L: Semi evergreen flowers fragrant, good along roadsides.
52.	Mimusops elengi (Sapotaceae)	T: Pogada H: Maulsari	M: Evergreen, good for avenues
3.	Moringa oleifera (Moringaceae)	T: Muluga H: Sainjna	M: Deciduous, with fragrant flowers, good in green belts.
4.	Murrava koenigi (Rutaceae)	T: Karepaku H: Mitha neem	S: Semi evergreen good in green belts and along small channels
5	Oreodoxa reqia (Palmae)	Royal palm	L: Semi evergreen good medium and small road sides as an ornamental plant.
6.	Pandanus odoratissimus (Pandanaceae)	T: Mugali H: Kewada	S: A densely branched shrub good in gardens near seashore
7.	Peltophorum inerme (Leguuminosae, Caesalphiniaceae)	T: Kondachinta	M: Semi evergreen, suitable on road sides, in in gardens & outside buildings.
8.	Plumeria acuuminata (Apocynaceae)	T: Vaala Ganneru H: Golainchi	M: Semi evergreen, fragrant white flowers, good in green belts.
9.	Plumeria alba	T: Veyui Varahaalu	S: Semi evergreen good for gardens
0.	Plumeria rubra	T: Nurruvarahalu H: Golainchi	S: semi evergreen good for gardens
1.	Pterocarpus marsupium (Leguminosae, Paplionaceae)	T: Vegi H: Bija	M: Deciduous, good on open areas with adequate light
2.	Pogamia pinnata (Leguminosae, Paplionaceae)	T: Ganuuga H: Karanj	M: Deciduous, good along roads & canals.
3.	Rauvolfa serpentina (Apocynaceae)	T: Paataalagani H: Chandrabhaga	S: An erect evergreen perennial shrub good along canal.
4.	Salmalia malabarica	T: Booruga H: Semul	M: Deciduous, Good for avenues
5.	Samanea saman (Leguminosae)	T: Nidraganneru	L: Deciduous, good tree along road sides for shade.
66.	Saraca indica (Leguminosae, Caesalpinaceae)	T: Ashoka H: Asok	M: Evergreen tree good on road sides within campus
			(Contd)

PLANT SPECIES FOR GREEN BELT DEVELOPMENT

		COMMON NAME	SIZE AND TYPE SUITABLE SIZE
67.			L: In gardens and avenues and in green
58.	Sykzygium cumini (Myyrtaceae)	T: Neeredu H: Jaman	L: Evergreen tree, good in green belts and within campus and road sides.
69.	Tabernamontana coronaria (Apocynaceae)	T: Gandhitagarapu H: Chandni	S: An evergreen shrub good in gardens and along canals.
70.	Tabebuia pentaphylla (Bignomiaceae)		M: Deciduous, good in gardens
71.	Tamarindus indica (Leguminosae,Caesalphiniaceae)	T: Chintachettu H: Imli	L: Semi evergreen tree along state & national highways suitable site.
72.	Ticoma stans (Bignomiaceae)	T: Pachgotla	L: Evergreen tree, good in garden and along canals.
73.	Tectona grandis (Verbenaceae)	T: Adviteeku H: Sagwan	M: Deciduous, good in green belts and on inner sides of roads.
74.	Terminalia alata (Combretaceae)	T: Tani H: Sain	L: Deciduous, good in green belts near flare site
75.	Terminalia arjuna	T: Yerramadi H: Arjuna	L: Evergreen tree for road sides and in green belts.
76.	Terminalia bellirica	T: Tani H: Bahora	L: Deciduous, good in green belts.
77.	Terminalia bellirica	T: Badamchettud H: Deshi Badam	L: Deciduous tree good near sea shore.
78.	Thespesia populanea (Malvaceae)	T: Gangaraavi H: Paras Pipal	M: Compact quick growing evergreen tree good along road sides.
79.	Thevetia peruviana (Apocynaceae)	T: Pachaganneru H: Pile, Kaner	S: An evergreen large shrub, has shady yellow, flowers, good around the waste treatment.
80.	Vitex negundo (Verbenanceae)	T: Vaavili H: Sambhaluu	S: A large shrub suitable on areas along channels and streams and on waste lands.
81.	Xylia xyicarpa (Eguminosae, Minosaceae)	T: Eravalu H: Jambu	L: Deciduous is green belts and on waste lands
82.	Zanthoxyium (Rutaceae)	T: Rhetsamaramu H: Badrang	M: Deciduous in green belts and on waste lands

NOTE: H Denotes Name in Hindi

Γ " Name in Telugu

S " Small size

L " Large size

M " Medium size